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Time-Domain Reflectometry Using
Arbitrary Incident Waveforms

Te-Wen Pan, Ching-Wen Hsu8enior Member, IEEEand Jhin-Fang Huang

Abstract—A novel time-domain reflectometry technique is de- Ac(t)

veloped for detecting the physical structures of transmission lines /\/\A_"
by using arbitrary waveforms. By discretizing both incident and
reflected waves, we formulate the reflection coefficient of a nonuni-
form transmission line as a polynomial ratio in the Z-transform,
wherein the numerator and denominator represent the reflected .
and incident waves, respectively. A reconstruction scheme is de- Inpht port
rived to obtain the characteristic impedance profile of a transmis-
sion line. Some examples are presented to illustrate the validity of
this new technique.

Nonuniform line

Fig. 1. Nonuniform transmission line and incident/reflected waves.

_ _ S ) The wave interactions with nonuniform transmission lines
Index Terms—inverse scattering, nonuniform line, time-domain have been studied by many authors for decades [1]-[9]. Most
reflectometry (TDR). . . : '
of the studies focused on the direct scattering problems. Some
papers [5], [7] were concerned with inverse scattering problems
|. INTRODUCTION in which the physical parameters of transmission lines were
ﬁ;tained from given scattering parameters at external ports. In

widely used to characterize the transmission paths in b S paper, we employ the sampling technique drtiansform

microwave and optical frequency bands [1]-[6]. Not only dodgethod to formul_ate bOth. ".‘C'de”‘ and refle_ct(_ed waves. As a
r-?lsult, the reflection coefficient of a transmission line can be

the TDR technique detect the occurrence of discontinuities i : o .
gressed as a polynomial ratio in thedomain where the nu-

transmission lines, it can also measure the impedance variati f : . -
of discontinuities. The theory of TDR is based on the fact th erator and denominator of the reflection coefficient represent

an incident wave will experience reflection when it encounte e rgflected and mc@ent waves, respectively. We can _then ar-
a discontinuity. By measuring the reflected wave, we can th rarily select the incident waveform by merely changing the

evaluate the propagation characteristics of a transmission pac[ﬂ_efnments of the denominatar polynominal of the reflection

Most of TDR applications thus far have been limited to th((_:}oefficient. For a given nonuniform line, each arbitrary incident
detection of discrete discontinuities of a transmission line. &Y€ will generate a distinctive reflected wave. By examining

particular, the conventional TDR technique uses a step wavi t. & mternali reflectlon—transm|33|on process Of. a transmission
, we derive a reconstruction scheme to obtain the character-

an incident source signal. For such a circumstance, each : . . . :
impedance profile of a nonuniform signal line. Several ex-

d
change in the reflected wave is caused by a discrete isolate . 2 :
discontinuity. However, the reflected wave at a certain time %nples are presented to illustrate the validity of this novel TDR

due to the superposition of all multiple reflected signals that atF-ChmqtuZ'rllt IS pertmlent :.c()j?omt out thirecolpstrtL;]ct;on s%heme
rive at the input terminal at that instant. Therefore, the convelf-esen ? d (te)re IS on yv;l fq(rja nlotnunl orm _mell a caTr;] gdap—l
tional TDR technique fails to characterize accurately the gigroximated by a cascade of ideal ransmission fines. 1he idea

continuities of a signal line when the transmission line consist{gmsmISSIon lines have characteristic impedances that are both

of continuously varying or multiple/complex discontinuities. ”{eal and frequency independent.
other words, if the reflected wave at certain time is composed of
signal components due to several individual discontinuities, the
conventional TDR technique is unable to separate the reflectedrig. 1 shows a nonuniform transmission line terminated with
signal components caused by the corresponding discontinuiti@soadZ;,. A wave A.(t) is incident upon the nonuniform line
In order to characterize the nonuniform line using the TDR tecfrom the left-hand side, whereis the time. The incident wave
nique, it is pertinent to study thoroughly the internal multiplean have arbitrary waveshape. This incident wave generates are-
reflection processes of a transmission line [3], [7]. flectedwave3.(t) attheinputportoftheline. Ifwe discretize both
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HE time-domain reflectometry (TDR) technique has be
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The delta sequenag, is the impulse response of the nonuni-
form transmission line, i.ed,, is the reflected wave when a unit
4.(1) impulse signal is incident upon the signal ling.(n = 0,1, 2)
Ad["‘] . : : .
/ is related taz,, andb,, in the following ways:
bo
do =D, (2)|,-1=0 = — (7a)
AN o
0 1 2 S n dy :[Dz<z> - d0]2|z—1=0 = a0 (7b)

(@) i )
dy = [Du(2)—do—dy 1] 22 -1 = 2= 00270,

bl —d0a1

o
B,(¢) (7¢)

/ A close examination on (6) and (7) reveals that b,,, andd,,
satisfy the following recursion equation:

A 2—2 n=0

0 1 2 3 e n ~N_ _ n-1
(b) = (bn -2 dﬂnz‘) ®)
=0

Fig. 2. Discretization of both: (a) incident and (b) reflected waves. o , n=1,2,...,N.

. . . If all a,, andb,, are given, we then use the above equation to
wheren = 1,2,..., N, N is the number of sampling¥, is the “ g d

. ; ; . obtaind,,.
sampling time interval, ané(t) is We know thatd,, is the impulse response occurring at the in-
5(t) = { 1, t=0 stantnT'. As a resultd,, a, is the reflected wave caused by the
0, otherwise wavefronta, of the incident signal. On the other hand, due to

Apparently,A4[n] andB[n] are the sampling values ofincidentthe internal multiple reflection processes of a nonuniform line,

) b, is the summation of the reflected signal components that ar-
and reflected waves, respectively. Thdransforms of delta se- . . . -
rive at the input end at the instanf’. To compare the digital
guencesA,[n] and By[n] are

signal-processing (DSP) concepts we have developed thus far

N . with the progressive process of the reflected wave, we show in
A(2) =) anz () Fig. 3(a) a multiple-section signal line, whefg (n < N) is
n=0 the characteristic impedance,is the propagation delay, and
and San(n < N) represents the reflection coefficient at the junc-
N tion between sections andn + 1. Notice thatr is equal to
B.(z) = Z bz " () (1/2)T. The relationship betweet;, andS,,,, can be expressed
o as follows:
respectively, where,, = A4[n], b, = By[n], andz = ¢/«T,  do = Soo (9a)
wherew is the angular frequency. We now define a function d; = (1 + Sg0)S11(1 — Soo) (9b)
D.(z) as the ratio ofB.(z) to A.(z), i.e., ds = (1 + So0)S11(—S00)S11(1 — Soo)
% T -+ (1 —+ SOO)(l -+ 511)(522)(1 — 511)(1 — Soo). (9C)
n=0

D.(z) = = (5) Ifall d, are given, we can get the reflection coefficiests,

3 a2z by solving (9) sequentially. An examination on the wave pro-
n=0 gressive behavior in a multisection line may help us obtain the
Note thatD.(z) may be viewed as the reflection coefficient of€flection coefficients,.,, through (9). As shown in Fig. 3(b),
the transmission line in thg domain. In other words)). (z) is Waves suffer from multiple transmissions and reflections at re-

the system function of the transmission line in the consideratiSRective junctions. If a unit impulse is incident upon junction 0
of reflection of transmission line. If we set= ¢7“T in (5), we Petween sections 0 and 1 at time= 0, it will generate a re-
obtain the reflection coefficient in the frequency domain. Thiéected wavel, att = 0. The reflected wavé,, is equal toSoo.
formin (5) is the same as that obtained by treating a nonunifo¥i ¢ = 7, the incident wave reaches junction 1 and it is split
line as a cascade of ideal transmission lines [9]. We furthermdféo two parts, namelyyl andw2. At ¢ = 27, wavewl trans-
expressD. (z) in terms of impulse response. We then have ~ Mits through junction 0 and generates the reflected whve
R which is equal tq1 + Spg)S11(1 — Soo). Note that(1 + Sop)
S bz - is the transmission coefficient at junction 0 from the left- to
D.(z) = =0 _ Z d, 2" (6) right-hand sideS;; is the reflection coefficient at junction 1
N e S from the left-hand side, and — Sy) is the transmission coef-
TLZ::O An ficient at junction 0 from the right- to left-hand side. If both,
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wherez is the space variabld, is the physical length, and,
and Z;, are the characteristic impedances on the incident and
transmitted ends of the triangular taper, respectively. When a
wave is incident upon the taper, it will produce a reflected wave
at the incident port. To characterize the impedance profile of
this taper line, as mentioned previously, we may select arbitrary
waveforms as the incident signals. Fig. 5 shows three arbitrary
> signals, namely, two single-sinusoidal waves and a single-trian-
gular (or sawtooth) wave. The single-sinusoidal incident signal
! is given by

w2 LY
d) < wl Vine () = A, sin wpt, for 0 < wot <27
00, elsewhere

12)

aum

where A, is the amplitude andy, is the angular frequency of
the signal. In Fig. 5, the angular frequencies for two sinusoidal
signals arevy = 27 - 10° andwy = 7 - 10%, respectively. The
amplitudeA; is 1 V. These two signal waves extend over 1 and
2 ns, respectively, in the time domain. The triangular signal is,
on the other hand, determined by

(b)

Fig. 3. (a) Nonuniform transmission line is represented by a cascade of ideal t
transmission lines. (b) The progressive behavior of waves on the signal line. A, t—, for0 <t
b
Vint () = t—1tp (13)
. . — , <t <
andd; are known,S1; is then obtained. We may obtaff,,, by A1 ta —tp )’ fort, <t <tq

observing the progressive behavior of waves at junction 0 and 0, elsewhere
all other discontinuity junctions. It is difficult to generalize (9)

and obtainS.,,, analytically. However, because the progressivghere 4, is the amplitude of the signal, is the duration of tri-
behavior of waves follows specific rules, we may edit an algemgular wave, ané, < #,. For the waveform shown in Fig. 5,
rithm and use a computer to solve the problem. Fig. 4 showg havet, = 0.5 ns and, = 1 ns. We show in Fig. 6 the
the flowchart of the algorithm. It solves,,,, when alld,, are  reflected waved, (t) when the incident waves in Fig. 5 are
given. Notice that sec(n).inc in the flowchart represents the ificident upon the triangular taper in (11), whefg = 50 ©,
cident wave from the left- to right-hand side on sectioand 7, — g0 0, andL = 10 cm. The propagation velocity of signal

sec(n).ref represents the reflected wave. in the triangular taper is set to 1ocm/s. Thus, the propagation
The impedance profile of the signal line is relatedstn, as  gelay across the taper line is 1 ns. Therefore, the pulsewidths of
follows: three incident signals are either the same as or larger than the
1+, propagation delay of signal line. Furthermore, we assume that
Znt1 =2 . (10)  the propagation delay of the line is independent of characteristic

"1 - Sun . C :
impedance distributior¥ (). Notice that the reflected waves

After obtaining the impedance profile, we then get the physicate obtained when the load end is terminated with a matched
length of each finite line by setting = 7v,, [11], wherev,, is load. To reconstruct the triangular taper, we first convert both
the propagation velocity of the signal in the corresponding linthe incident and reflected waves into tHetransform polyno-
Note that, for a given characteristic impedarif;eand dielec- mials by employing (1)—(4), i.e., we get the coefficieatsand

tric constant,. in a microstrip-line configuration, we obtain theb,, that represent the incident and reflected waves, respectively.
ratio of strip width to substrate thickness [11], which yields th&€he reconstructed tapers are then obtained by using recursive

effective dielectric constant of a microstrip line. equations (8)—(10). As shown in Fig. 7, three numerically re-
constructed lines are almost identical with the original triangular
IIl. NUMERICAL EXAMPLES taper. Note that the signal line shown in (11) is assumed to be

] o lossless and dispersionless. The results reveal that we may em-
We present several examples to illustrate the validity of thg, o rhitrary incident waves to characterize transmission lines.
above theory. We consider a triangular taper that has the profjle, o ticular, the pulsewidth has little effect on the space reso-
distribution of characteristic impedance as follows: lution of reconstructed lines. The conventional TDR technique

) I employs a step signal as the incident wave, wherein the rise
Zoe2 @/ L) (21 /Z0) for0 <z < 3 time of the step signal ranges from several picoseconds to sev-
Z(x) = { Zyelt4a/1)=(22°/L)=1)* In(Z1./ Zo) (11) eral tens of picoseconds. The requirements of both arbitrary rise

time and pulsewidth separate our novel scheme from the con-
for o <z<L ventional TDR technique.
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Start

v

Initial:

Soo=do

sec(0).ref=0

v

Fori=1toN

v

S,=d —secO)refx(l+S)o)/liil(1—s,,,)(l+sn,.)

v

sec(i-1).ref=sec(i-1).incx

v

Forj=i-2 downto 0, if j=0

v
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sec(y).ref=sec(j+1).incx(1-Sjs1 1) +s€c(f).incxSjs1 41

v

End; loop

v

sec(i).inc=sec(i-1).incx(1-S;;)

l

Fork=i-1downto 1,ifk=1

v

sec(k).inc=sec(k).refx(-Si)+sec(k-1).incx(1+Sk)

v

End & loop

v

sec(0).inc=sec(0).refx(-Soo)

v

sec(i-1).ref=sec(i-1).incxS;;

v

For m=i-2 downto 0, if m=0

v

sec(m).ref=sec(m+1).refx(1+S,+1,m+1)+sec(m).incx(Sp+1.m+1)

v

End m loop

Fig. 4. Flowchart of the algorithm that solvés ,, when alld,, are given.

—sine 1ns
--triangular
--sine 2ns

". [} "‘ 1 1
1.5 2 25 3
Time (ns)

Fig. 5. Three arbitrary incident waves.

IV. EXPERIMENTAL RESULTS

v

End 7 loop

v

End

is controlled by changing the strip width of the line. The
characteristic impedance of the nonuniform line varies between
20-75Q and the line is 14-cm long. This microstrip is built on

a Duroid substrate having a thickness of 1.52 mm (60 mil) and
a dielectric constant of 3.38. Fig. 9 shows the reflected waves
V.(t) when a triangular and two sinusoidal waves in Fig. 5
are incident upon the nonuniform microstrip. We measure the
frequency-domain scattering parameter of the nonuniform line
by using an HP8510C network analyzer. The multiplication
of this scattering parameter with the Fourier transforms of
the incident signal yields the reflected signal in the frequency
domain. Finally, we obtain the time-domain reflected wave by
taking the inverse Fourier transform of the frequency-domain
response [10]. Due to the continuous variation of characteristic
impedance of the nonuniform microstrip, the reflected waves
suffer severe waveform distortion. The transient ripples of

Fig. 8 shows a layout of a nonuniform microstrip whereithe reflected waves due to a triangular incident wave and
the characteristic impedance distribution of the microstri/o sinusoidal waves last longer than the pulse duration of
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Fig. 6. Reflected waves generated by a triangular taper and the incident waves

in Fig. 5.

IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 50, NO. 11, NOVEMBER 2002

—sine 1ns
--triangular
--sine 2ns
] A
2 3
Time (ns)

75

70
Z(x)

65
@

60

55

T ideal
""" sine 1ns
*  triangular

&,

i

le
<

14 cm

0 25 50 75 100 125 150 175 200

X (mm)

Fig. 8. Physical layout of a nonuniform microstrip.
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Fig. 10. Characteristic impedance distribution of the reconstructed and
original microstrips.

presented in Section Il illustrates that the reflected signal lying
between 0-1.7 ns is sufficient to determine the characteristic
impedance profile of the nonuniform line. However, to assure
the completion of reconstruction procedure, the whole transi-
tion ripple should be taken into consideration. When the whole
transition ripple is considered in the reconstruction process, the
reconstructed signal line consists of a nonuniform line and an
extra uniform line representing a matched load. Fig. 10 shows
the characteristic impedance distribution of three reconstructed
lines. To get these three lines, we first divide each of the re-
flected waves in Fig. 9 into 100 subintervals to getlihseries,
i.e.,T = (6/100) ns is used in the numerical evaluation. The

Fig. 7. Reconstructed triangular tapers and the original taper as a functiod@P€dance profile in the time domain is obtained by using both

the reconstruction formulas (8)—(10) and the reconstruction
algorithm shown in Fig. 3. We attain the physical length of the
reconstructed line by using = 7v,,, wherer is the propaga-
tion delay andv,, is the propagation velocity of signal in the
corresponding subsection line. Obviously, three reconstructed
lines are in good agreement with the original signal line. To
compare our reconstruction scheme with the conventional TDR
technique, we also show in Fig. 10 the TDR measurement
results. The accuracy of our reconstruction scheme is better
than that of the conventional TDR technique.

We usually employ a narrow pulse signal as the incident wave
to improve the space resolution of the reconstructed transmis-
sion line. However, the above results reveal that signals of any
waveshapes or pulsewidths can be used to detect the character-
istic impedance profiles of signal lines. This is true because the
spatial resolution of the transmission line is a function of the
sampling interval rather than the duration of the incident pulse.
Although the envelopes of the incident waves in the space do-
main are larger than the physical length of a nonuniform line,
the new TDR technique can still differentiate the details of a
signal line. Such a property is based on the fact that this novel

Fig. 9. Reflected waves generated by incident waves and the microstripsgheme embraces internal multiple transmission-reflection pro-

Fig. 8.

cesses of a nonuniform signal line. As a result, a slow slew-rate
incident wave will not degrade the resolution of a reconstructed

respective incident waves. Note that the propagation delay tesinsmission line. One should note that a very slow slew-rate in-
the signal traveling across the nonuniform microstrip in Fig. 8ident wave may cause greater computation errarg in,,, and
is approximately 0.85 ns. For this specific example, the theady;, which will reduce the accuracy of the reconstructed result.
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